Improved Construction Sites Waste Management

Sagacify Logo

Challenge

On construction sites, effective waste sorting is critical for both environmental compliance and material recovery value. However, sorting practices are often inconsistent, resulting in contaminated containers that cannot be sold for full recycling value. This leads to higher disposal costs and diminished sustainability impact. Besix, a global construction leader, sought a way to automatically monitor container content and detect sorting errors early, without adding operational overhead.

Nature of collaboration

Besix partnered with Sagacify to develop a solution capable of analyzing construction site imagery and assessing waste sorting quality. Working with limited training data due to pandemic-related site closures, the teams implemented a custom annotation environment and collaborated closely to label real-world images captured on-site.

Solution

Sagacify built an AI model that detects containers in construction site images, classifies their contents, and identifies the presence and proportion of contaminants. The system automatically alerts site managers when contamination is detected, enabling faster corrective action. To address the challenge of minimal labeled data, a self-supervised learning approach was used to maximize model performance under low-data conditions. The solution was designed to work with standard crane-mounted cameras and integrates into Besix’s on-site workflows.

Impact

=

Precise

Classification of waste content from site footage

=

Rapid

Alerts for on-site waste contamination

>

Gained

Resale value from well-sorted containers

Hear from the client

Our Footprint in the Financial Services Industry

1.5
M Documents
Process annually
X
Partnerships
Supported by our experts continuously
X
Active projects
Including banks & insurers

Related Cases

AI Won't let you down

Feeling lost ?

Let's discuss over a coffee; our AI experts have you covered!